根据5月27日IT之家报道,国务院新闻办公室在今日上午举行了推动高质量发展系列主题新闻发布会。四川省委副书记、省长黄强在会上表示,四川将人工智能作为一号创新工程,致力于推动绿氢全产业链的发展和推广应用,同时还打造生物技术、卫星网络、智能网联新能源汽车、无人机和工业互联网等战略性新兴产业,大力发展低空经济和商业航天。
针对四川将人工智能视为一号创新工程的优势和具体措施,四川省科技厅厅长吴群刚指出,四川是我国东数西算工程的关键节点。目前,四川拥有两家国家级算力平台、1100多家人工智能企业,以及27所高校开设的人工智能相关专业。基于这样的坚实基础,四川将发展人工智能作为推动高质量发展的先导行动,集中力量攻坚。
吴群刚强调,在具体实践中,四川主要从技术、政策和改革方面下功夫。在推动技术创新方面,四川聚焦智算芯片、算力服务器、算法模型等核心领域,组织有序的科研攻关,力争加快突破一批原创性技术。例如,成都某科技企业创新研发了结合人工智能与卫星技术的技术,能够在太空中对图像进行智能处理,提高卫星利用效率。该企业正在持续攻关,致力于实现更多的天上数据处理、天上结果呈现,为未来深空开发带来更多可能性。
在加大政策支持力度方面,四川整合各方政策和资源,超常规精准支持,尤其对有潜力和情怀的企业给予重点支持。政府将支持措施一步到位,满足企业需求。四川支持清华大学、四川大学、成都蓉创公司等,整合省内外优势资源,成立了四川省智能感算技术创新中心,迅速聚集了300多名在芯片、算法、机器人等领域的创新人才,构建了创新链集群。
四川在用好改革关键一招方面保持小切口、大纵深,促进教育、人才和科技的良性循环,为人工智能发展提供源源不断的动力。不久前,四川成立了省人工智能学院,由电子科技大学主导,与其他8所省内院校以及华为、腾讯等重要企业共同参与,实现了多校联手、校企联动的人才培养模式,推动了人才供求衔接和产学融合。
算力可贵,效率价高:智算中心凭啥是筑基新基建的最优解?
在“新基建”浪潮下,人工智能正成为经济增长的新引擎,各行各业开启智能化升级转型。算力在其中扮演了重要角色,是国家未来竞争力的集中体现。但事实是,在发展的过程中,高速增长的海量数据与更加复杂的模型,正在为算力带来更大的挑战,主要体现为算力不足,效率不高。
算力诚可贵:数据、算法需要更多算力支撑
众所周知,在人工智能发展的三要素中,无论是数据还是算法,都离不开算力的支撑,算力已成为人工智能发展的关键要素。
IDC发布的《数据时代2025》报告显示,2018年全球产生的数据量为33ZB (1ZB=1万亿GB),到2025年将增长到175ZB,其中,中国将在2025年以48.6ZB的数据量及27.8%的占比成为全球最大的数据汇集地。
另据赛迪顾问数据显示,到2030年数据原生产业规模量占整体经济总量的15%,中国数据总量将超过4YB,占全球数据量30%。数据资源已成为关键生产要素,更多的产业通过利用物联网、工业互联网、电商等结构或非结构化数据资源来提取有价值信息,而海量数据的处理与分析对于算力的需求将十分庞大。
算法上,先进模型的参数量和复杂程度正呈现指数级的增长趋势。此前 Open AI 发表的一项研究就显示,每三到四个月,训练这些大型模型所需的计算资源就会翻一番(相比之下,摩尔定律有 18 个月的倍增周期)。2012 至 2018 年间,深度学习前沿研究所需的计算资源更是增加了 30 万倍。
到2020年,深度学习模型对算力的需求达到了每天百亿亿次的计算需求。2020年2月,微软发布了最新的智能感知计算模型Turing-NLG,参数量高达到175亿,使用125POPS AI计算力完成单次训练就需要一天以上。随后,OpenAI又提出了GPT-3模型,参数量更达到1750亿,对算力的消耗达到3640 PetaFLOPS/s-day。而距离GPT-3问世不到一年,更大更复杂的语言模型,即超过一万亿参数的语言模型SwitchTransformer即已问世。
由此可见,高速增长的海量数据与更加复杂的模型,正在给算力带来更大的挑战。如果算力不能快速增长,我们将不得不面临一个糟糕的局面:当规模庞大的数据用于人工智能的训练学习时,数据量将超出内存和处理器的承载上限,整个深度学习训练过程将变得无比漫长,甚至完全无法实现最基本的人工智能。
效率价更高:环境与实际成本高企,提升效率迫在眉睫
在计算工业行业,有个假设是“数字处理会变得越来越便宜”。但斯坦福人工智能研究所副所长克里斯托弗•曼宁表示,对于现有的AI应用来说却不是这样,特别是因为不断增加的研究复杂性和竞争性,使得最前沿模型的训练成本还在不断上升。
根据马萨诸塞大学阿默斯特校区研究人员公布的研究论文显示,以常见的几种大型 AI 模型的训练周期为例,发现该过程可排放超过 磅二氧化碳,几乎是普通 汽车 寿命周期排放量的五倍(其中包括 汽车 本身的制造过程)。
例如自然语言处理中,研究人员研究了该领域中性能取得最大进步的四种模型:Transformer、ELMo、BERT和 GPT-2。研究人员在单个 GPU 上训练了至少一天,以测量其功耗。然后,使用模型原始论文中列出的几项指标来计算整个过程消耗的总能量。
结果显示,训练的计算环境成本与模型大小成正比,然后在使用附加的调整步骤以提高模型的最终精度时呈爆炸式增长,尤其是调整神经网络体系结构以尽可能完成详尽的试验,并优化模型的过程,相关成本非常高,几乎没有性能收益。BERT 模型的碳足迹约为1400 磅二氧化碳,这与一个人来回坐飞机穿越美洲的排放量相当。
此外,研究人员指出,这些数字仅仅是基础,因为培训单一模型所需要的工作还是比较少的,大部分研究人员实践中会从头开发新模型或者为现有模型更改数据集,这都需要更多时间培训和调整,换言之,这会产生更高的能耗。根据测算,构建和测试最终具有价值的模型至少需要在六个月的时间内训练 4789 个模型,换算成碳排放量,超过 磅。而随着 AI 算力的提升,这一问题会更加严重。
另据 Synced 最近的一份报告,华盛顿大学的 Grover 专门用于生成和检测虚假新闻,训练较大的Grover Mega模型的总费用为2.5万美元;OpenAI 花费了1200万美元来训练它的 GPT-3语言模型;谷歌花费了大约6912美元来训练 BERT,而Facebook针对当前最大的模型进行一轮训练光是电费可能就耗费数百万美元。
对此,Facebook人工智能副总裁杰罗姆•佩森蒂在接受《连线》杂志采访时认为,AI科研成本的持续上涨,或导致我们在该领域的研究碰壁,现在已经到了一个需要从成本效益等方面考虑的地步,我们需要清楚如何从现有的计算力中获得最大的收益。
在我们看来,AI计算系统正在面临计算平台优化设计、复杂异构环境下计算效率、计算框架的高度并行与扩展、AI应用计算性能等挑战。算力的发展对整个计算需求所造成的挑战会变得更大,提高整个AI计算系统的效率迫在眉睫。
最优解:智算中心大势所趋,应从国家公共设施属性做起
正是基于上述算力需求不断增加及所面临的效率提升的需要,作为建设承载巨大AI计算需求的算力中心(数据中心)成为重中之重。
据市场调研机构Synergy Research Group的数据显示,截至到2020年第二季度末,全球超大规模数据中心的数量增长至541个,相比2015年同期增长一倍有余。另外,还有176个数据中心处于计划或建设阶段,但作为传统的数据中心,随之而来的就是能耗和成本的大幅增加。
这里我们仅以国内的数据中心建设为例,现在的数据中心已经有了惊人的耗电量。据《中国数据中心能耗现状白皮书》显示,在中国有 40 万个数据中心,每个数据中心平均耗电 25 万度,总体超过 1000 亿度,这相当于三峡和葛洲坝水电站 1 年发电量的总和。如果折算成碳排放则大概是 9600 万吨,这个数字接近目前中国民航年碳排放量的 3 倍。
但根据国家的标准,到2022年,数据中心平均能耗基本达到国际先进水平,新建大型、超大型数据中心的 PUE(电能使用效率值,越低代表越节能)达到 1.4 以下。而且北上广深等发达地区对于能耗指标控制还非常严格,这与一二线城市集中的数据中心需求形成矛盾,除了降低 PUE,同等计算能力提升服务器,尤其是数据中心的的计算效率应是正解。
但众所周知的事实是,面对前述庞大的AI计算需求和提升效率的挑战,传统数据中心已经越来越难以承载这样的需求,为此,AI服务器和智算中心应运而生。
与传统的服务器采用单一的CPU不同,AI服务器通常搭载GPU、FPGA、ASIC等加速芯片,利用CPU与加速芯片的组合可以满足高吞吐量互联的需求,为自然语言处理、计算机视觉、语音交互等人工智能应用场景提供强大的算力支持,已经成为人工智能发展的重要支撑力量。
值得一提的是,目前在AI服务器领域,我们已经处于领先的地位。
近日,IDC发布了2020HI《全球人工智能市场半年度追踪报告》,对2020年上半年全球人工智能服务器市场进行数据洞察显示,目前全球半年度人工智能服务器市场规模达55.9亿美元(约326.6亿人民币),其中浪潮以16.4%的市占率位居全球第一,成为全球AI服务器头号玩家,华为、联想也杀入前5(分别排在第四和第五)。
这里业内也许会好奇,缘何中国会在AI服务器方面领跑全球?
以浪潮为例,自1993年,浪潮成功研制出中国首台小型机服务器以来,经过30年的积累,浪潮已经攻克了高速互联芯片,关键应用主机、核心数据库、云数据中心操作系统等一系列核心技术,在全球服务器高端俱乐部里占有了重要一席。在AI服务器领域,从全球最高密度AGX-2到最高性能的AGX-5,浪潮不断刷新业界最强的人工智能超级服务器的纪录,这是为了满足行业用户对人工智能计算的高性能要求而创造的。浪潮一直认为,行业客户希望获得人工智能的能力,但需要掌握了人工智能落地能力的和技术的公司进行赋能,浪潮就可以很好地扮演这一角色。加快人工智能落地速度,帮助企业用户打开了人工智能应用的大门。
由此看,长期的技术创新积淀、核心技术的掌握以及对于产业和技术的准确判断、研发是领跑的根本。
至于智算中心,去年发布的《智能计算中心规划建设指南》公布了智能计算中心技术架构,基于最新人工智能理论,采用领先的人工智能计算架构,通过算力的生产、聚合、调度和释放四大作业环节,支撑和引领数字经济、智能产业、智慧城市和智慧 社会 应用与生态 健康 发展。
通俗地讲,智慧时代的智算中心就像工业时代的电厂一样,电厂是对外生产电力、配置电力、输送电力、使用电力;同理智算中心是在承载AI算力的生产、聚合、调度和释放过程,让数据进去让智慧出来,这就是智能计算中心的理想目标。
需要说明的是,与传统数据中心不同,“智算中心”不仅把算力高密度地集中在一起,而且要解决调度和有效利用计算资源、数据、算法等问题,更像是从计算器进化到了大脑。此外,其所具有的开放标准,集约高效、普适普惠的特征,不仅能够涵盖融合更多的软硬件技术和产品,而且也极大降低了产业AI化的进入和应用门槛,直至普惠所有人。
其实我们只要仔细观察就会发现,智算中心包含的算力的生产、聚合、调度和释放,可谓集AI能力之大成,具备全栈AI能力。
这里我们不妨再次以浪潮为例,看看何谓全栈AI能力?
比如在算力生产层面,浪潮打造了业内最强最全的AI计算产品阵列。其中,浪潮自研的新一代人工智能服务器NF5488A5在2020年一举打破MLPerf AI推理&训练基准测试19项世界纪录(保证充足的算力,解决了算力提升的需求);在算力调度层面,浪潮AIStation人工智能开发平台能够为AI模型开发训练与推理部署提供从底层资源到上层业务的全平台全流程管理支持,帮助企业提升资源使用率与开发效率90%以上,加快AI开发应用创新(解决了算力的效率问题);在聚合算力方面,浪潮持续打造更高效率更低延迟硬件加速设备与优化软件栈;在算力释放上,浪潮AutoML Suite为人工智能客户与开发者提供快速高效开发AI模型的能力,开启AI全自动建模新方式,加速产业化应用。
那么接下来的是,智算中心该遵循怎样的发展路径才能充分发挥它的作用,物尽其用?
IDC调研发现,超过九成的企业正在使用或计划在三年内使用人工智能,其中74.5%的企业期望在未来可以采用具备公用设施意义的人工智能专用基础设施平台,以降低创新成本,提升算力资源的可获得性。
由此看,智能计算中心建设的公共属性原则在当下和未来就显得尤为重要,即智能计算中心并非是盈利性的基础设施,而是应该是类似于水利系统、水务系统、电力系统的公共性、公益性的基础设施,其将承载智能化的居民生活服务、政务服务智能化。因此,在智能计算中心规划和建设过程中,要做好布局,它不应该通过市场竞争手段来实现,而要体现政府在推进整个 社会 智能化进程的规划、节奏、布局。
总结: 当下,算力成为推动数字经济的根基和我国“新基建“的底座已经成为共识,而如何理性看待其发展中遇到的挑战,在不断高升算力的前提下,提升效率,并采取最佳的发展策略和形式,找到最优解,将成为政府相关部门以及相关企业的重中之重。
人工智能的应用领域有哪些?
人工智能主要应用领域1、农业:农业中已经用到很多的AI技术,无人机喷撒农药,除草,农作物状态实时监控,物料采购,数据收集,灌溉,收获,销售等。
通过应用人工智能设备终端等,大大提高了农牧业的产量,大大减少了许多人工成本和时间成本。
2、通信:智能外呼系统,客户数据处理(订单管理系统),通信故障排除,病毒拦截(360等),骚扰信息拦截等3、医疗:利用最先进的物联网技术,实现患者与医务人员、医疗机构、医疗设备之间的互动,逐步达到信息化。
例:健康监测(智能穿戴设备)、自动提示用药时间、服用禁忌、剩余药量等的智能服药系统。
4、社会治安:安防监控(数据实时联网,公安系统可以实时进行数据调查分析)、电信诈骗数据锁定、犯罪分子抓捕、消防抢险领域(灭火、人员救助、特殊区域作业)等5、交通领域:航线规划、无人驾驶汽车、超速、行车不规范等行为整治6、服务业:餐饮行业(点餐、传菜,回收餐具,清洗)等,订票系统(酒店、车票、机票等)的查询、预定、修改、提醒等7、金融行业:股票证券的大数据分析、行业走势分析、投资风险预估等8、大数据处理:天气查询,地图导航,资料查询,信息推广(推荐引擎是基于用户的行为、属性(用户浏览行为产生的数据),通过算法分析和处理,主动发现用户当前或潜在需求,并主动推送信息给用户的浏览页面。
),个人助理
百度智能云AI技术加身,自动驾驶量变到质变倍道兼行
当前,自动驾驶技术的发展可谓日新月异,不过离最高级别还相去甚远。2022年,自动驾驶行业在喜忧参半中前行,一方面,众多自动驾驶公司估值缩水、裁员倒闭,高级别自动驾驶技术商业化落地尚需时日;另一方面,国内自动驾驶利好政策密集出台,首次实现立法突破,自动驾驶测试区不断增加。
据IDC《中国汽车云市场跟踪研究,22H2》报告显示,2022下半年,中国汽车云解决方案市场规模共计17.62亿人民币。其中,中国自动驾驶研发解决方案市场规模达4.95亿人民币,同比增长100.2%。网络智能云以35.9%的市场份额排名第一,同比实现162.0%的超高速增长,在国内汽车云市场中处于龙头地位。
在自动驾驶预冷之际,网络智能云为什么能够在竞争激烈的智能云市场取得如此骄人业绩?在自动驾驶赛道,网络智能云有怎样的布局和哪些合作模式?如何利用优越的闭环能力提升自动驾驶领域客户的核心竞争力?
图 | 网络智能云泛科技行业总经理张玮接受焉知专访
带着这些问题,记者在焉知第三届焉知年会线下专场会——网络智能云自动驾驶领域区域“智能行”系列活动(华东站)期间专访了网络智能云泛科技行业总经理张玮。他表示,网络智能云布局由来已久,之所以能够得到广大客户的高度认可,皆源于以合作模式、极致优化、全面数据服务,以及“AI大底座”技术,持续满足客户的差异化需求,为客户创造价值。
智能云市场网络何以一骑绝尘?
不言而喻,智能汽车是未来汽车发展的方向,自动驾驶技术已成为智能汽车研发的关键,汽车云市场竞争的关键领域之一正是自动驾驶。2023年,作为一种集成多种AI技术的综合模型,“AI+大模型”在自动驾驶中呈现出广阔应用前景,成为整个智能汽车行业关注的焦点。
网络智能云之所以在中国自动驾驶研发解决方案市场领袖群伦,张玮道出了个中缘由:“首先得益于网络智能云的领先架构。作为大模型与自动驾驶并重的头部科技公司,网络智能云基于‘云智一体’优势,正持续发力自动驾驶应用。”
他说,从2019年提出“云智一体”概念至今,网络智能云“云智一体”架构已迭代至3.0版本。通过切入行业核心场景,打造行业标杆应用,带动和沉淀了AI PaaS和AI IaaS层的能力,打造出极致性价比的异构算力和高效AI开发运行能力,其向上可优化已有应用、孵化新应用,向下可以改造数字底座。
“‘云智一体’战略让我们较早地在芯片、框架、模型和应用各层进行了布局和协同,成为全球唯一一家在各层都有领先产品的公司,”张玮说。
如果要给网络智能云找两个关键词,其一是“聚焦”,网络智能云依托“云智一体”的领先优势,聚焦自动驾驶研发过程,利用核心技术做最核心的事;其二是“完整”,网络智能云提供了从业务侧到资源侧的完整解决方案,包括端到端数据闭环、贯穿研发流程的工具链、为工具链提效的大模型,以及为全流程提供强大算力支持的“AI大底座”,能够满足从L2到L4的研发需求,加速自动驾驶业务落地。
整体布局满足客户差异化需求
谈到网络智能云在自动驾驶领域的布局,张玮表示,网络智能云依靠多年来在云计算、大数据、人工智能的深耕,赋能自动驾驶多个垂直赛道,客户涵盖乘用车造车新势力、商用车干线物流类、Tier1/2汽车零部件厂商、L4/L5无人自动驾驶小车,以及耕耘自动驾驶算法、解决方案的科技公司。
在解决方案层面,网络智能云提供自动驾驶云边协同、安全合规、量产车流量调度等解决方案,相关智能座舱解决方案、大数据解决方案都在场景打磨过程中。相比其他友商,网络智能云的产品与解决方案更为全面,无论是最佳实践,还是产品功能等都有丰富的最佳实践、落地场景,全面覆盖智驾、智舱、智图、智云四个领域。
灵活多样的合作模式也是网络智能云的一大特色,“合作既可以是双方共建式的战略合作,也可以是项目的合作,当然,我们也非常欢迎客户成为我们的生态合作伙伴,联合打磨解决方案和产品,”张玮表示。
在满足不同客户的差异化需求方面,网络智能云提供了丰富的产品和服务,包括基础云底座的IaaS和PaaS服务,还有上层应用级别的通用应用产品和行业应用产品,不同的客户可以各取所需。
在张玮看来,车企选择云服务合作伙伴的关键考量主要包括:一是技术实力和服务能力,比如能否提供先进的产品技术和解决方案,能否提供安全可靠的数据存储和计算服务,以及能否提供高效专业的客户服务;二是合作伙伴的支持和协同能力,包括是否有完善的合作机制和支持体系,是否能够协同创新和开拓市场;三是能否提供定制化解决方案,满足车企的差异化需求。
为了提供更好的服务,网络智能云从四个方面入手打造,一是加强技术研发和服务能力建设,不断提升产品技术和解决方案的先进性和服务质量;二是建立完善的合作机制和支持体系,为合作伙伴提供全方位的支持和服务;三是与合作伙伴一起积极进行市场推广和业务创新;四是注重定制化解决方案的开发,为客户量身定制。
极致优化为客户创造价值
构建自动驾驶端到端的模型生产和上线迭代的闭环能力,是自动驾驶领域客户加速技术研发和商用落地的核心竞争力之一。在这方面,网络智能云通过网络百舸方案对自动驾驶常用模型进行了优化与加速,尤其是通过百舸方案的AIAK训练加速能力。
截止目前,在CV、NLP、推荐场景中,基于百舸AIAK-Training2.0能力,针对自动驾驶典型模型,如resNET、bert、swin-transformer等,网络智能云携手英伟达,通过数据加载优化、模型计算优化、多卡通信优化等手段,实现了17个模型训练多达39%-390%的性能提升。“这项模型训练优化工作还在不断扩展和进行中。所以,网络百舸尤其模型训练加速能力,能为客户带来非常大的价值,”张玮信心满满。
他介绍说,网络智能云的AI IaaS,也就是网络百舸是一个AI异构计算平台,包含AI计算、AI存储、AI加速、AI容器四大核心套件,具有高性能、高弹性、高速互联、高性价比等特性。该平台充分汲取了网络异构计算平台多年的技术积累,深度融合无人驾驶场景的实践经验,能够为AI场景提供软硬一体解决方案,加速AI研发和工程化落地。
全面数据服务助客户降本增效
那么,在自动驾驶的数据采集、数据传输、数据存储、数据处理/标注、数据训练/仿真/测试等各个阶段,网络智能云是否都可以提供相应的服务呢?张玮给出了肯定的答案。
据他介绍,网络智能云可以提供自动驾驶领域全部的工具链能力,完整覆盖数据采集、传输、存储、数据处理与标注,以及训练/仿真/测试等自动驾驶业务环节。例如,在车辆数采环节,网络智能云有专业的数采服务,具备满足安全合规要求的甲级测绘资质。数据采集完成后,使用网络智能云移动存储设备月光宝盒及适配车机的硬盘,可满足用户对数据传输的时效性和安全性要求。随着采集数据量的不断增长,数据存储、扩展及成本控制已成为企业的重点考量,为此,网络智能云提供具备海量存储、AI数据处理等能力的对象存储产品。
在自动驾驶工具链的数据标注方面,网络智能云能够输出基于安全合规的数据标注解决方案。在自动驾驶训练环节,基于百舸AI异构计算平台,通过其AI计算层面的RDMA网络能力、AI存储层面的高速数据读取能力、AI容器层面的虚拟化与隔离能力,以及AI加速层面的训练推理加速能力,不仅可以大幅降低通信延时,提升训练与推理效率,还能在很大程度上帮助企业降低成本。网络智能云可以为企业客户提供基于海量场景精准度量的云仿真平台,帮助客户实现降本增效。
张玮坦承,自动驾驶数据,尤其是车采数据,量级非常庞大,随着存储规模的不断增大,存储成本也会成为一个棘手的问题。这种场景很适用网络智能云对象存储产品,因为它不仅具备分级存储能力,可以帮客户控制存储成本,同时轻松实现海量数据扩容,又具备原生的若干AI数据处理能力。PFS产品是专门针对高性能计算场景的并行文件存储服务,可以提供亚毫秒级访问能力、高IOPS及高吞吐的数据读写请求能力,非常适合AI训练场景,特别是自动驾驶训练数据集存储场景。利用存储分类,不仅能够精细化满足场景需求,也能提升业务和训练效率,帮助客户降低存储成本。
在数据标注环节,人工标注耗时费力,且标准不一。通常,云厂商都试图通过工程方法尽量减少人工标注,以提高标注效率。两种方法一是通过机器自动化标注,然后人工修正部分数据;二是通过仿真模拟生成大量标注好的数据。“这两种方式,在网络智能云内部都在使用。对于全新业务场景或经验积累较少的特定业务场景,优先以人工标注为主,以不断积累经验。之后再不断将能力完善到自动化标注工具中,所以目前已知的众多自动驾驶数据标注场景中,都在使用我们的自动化标注工具。”张玮说。
最后是路采车产生的海量数据的传输。张玮指出,通常企业会面临图商资质、采集备案、规范路采、脱敏脱密等业务痛点。“网络智能云有专业的数据采集服务,不仅有采集车队,还有专业的车辆改装技术团队,可进行深度定制,满足客户的多样化需求。”张玮补充说:“在具体数据传输中,都是按照安全合规要求进行;对于路采车是以加密硬盘形式离线运送数据,硬盘运送途中有2名具备安全资质的人员互相监督,从而保证数据与操作合规。”
“AI大底座”加速自动驾驶研发迭代
自动驾驶领域是一个强人工智能CV视觉的新兴高科技领域,大模型训练的支撑不可或缺,网络智能云是如何让大模型发挥作用的呢?
张玮告诉记者,网络智能云多年来一直在AI领域对相关技术能力进行深度研究与打磨,比如,以自动驾驶模型为重点的训练与仿真环节,利用网络多年沉淀的“AI大底座”技术栈,通过异构计算平台的GPU算力,在大幅提升性能的同时提高了利用率,有效解决了目前大模型的“算力恐慌”瓶颈;同时网络智能云还与英伟达合作,对一些特定算法模型进行定向优化,形成AIAK异构计算平台训练加速组件,目前这些能力都是免费提供给客户使用。
谈到网络智能云“AI大底座”异构计算平台的最佳实践,张玮分享道,某头部乘用车造车新势力的套整自动驾驶技术栈都部署在网络智能云上,使用“AI大底座”中的CCE云原生产品,在使用AIAK优化加速组件以及GPU资源共享调度下,资源利用率提升了2.5倍以上,在其自动驾驶业务研发方面发挥了重要作用。
另一个案例是国内一家头部汽车芯片公司,几年前该公司开始使用网络智能云设计的一套混合云架构,目前大部分核心训练任务都在网络智能云上完成。在“AI大底座”技术栈的赋能下,高效支持了该公司训练等相关任务,加速了产品研发迭代、芯片上车和SOP量产速度。
大模型虽好,但必须用数据来驱动。数据量不足,就会影响自动驾驶感知大模型的训练效果。凭借多年自动驾驶行业实践,特别是来自大量Apollo量产车在北京、上海、广州、武汉、重庆的道路数采自动驾驶数据,基于网络文心大模型的全流程数据训练,保障了其模型的精准性。“我们还将相关能力打磨成了产品和解决方案,可以为有数据采集、标注、训练需求的客户提供全套数据闭环解决方案,”张玮补充道。
结束语
“云智一体,深入产业”是网络智能云的战略,基于“AI大底座”和文心大模型,以及行业领先的全套自动驾驶工具链,网络智能云先后帮助传统车企、新势力、商用车和解决方案供应商等行业用户实现了自动驾驶业务落地。
张玮最后表示,AI技术赋能网络智能云正在加速自动驾驶由量变到质变的进程。未来,网络智能云将持续深耕包括“数据闭环-自动驾驶工具链-大模型-AI大底座”在内的自动驾驶研发解决方案,帮助汽车行业实现智能化升级。