大家好,我是飞哥!,今天我们来思考一个简单的问题,一个程序是如何在 Linux 上执行起来的?,我们就拿全宇宙最简单的 Hello World 程序来举例。,我们在写完代码后,进行简单的编译,然后在 shell 命令行下就可以把它启动起来。,那么在编译启动运行的过程中都发生了哪些事情了呢?今天就让我们来深入地了解一下。,源代码在编译后会生成一个可执行程序文件,我们先来了解一下编译后的二进制文件是什么样子的。,我们首先使用 file 命令查看一下这个文件的格式。,file 命令给出了这个二进制文件的概要信息,其中 ELF 64-bit LSB executable 表示这个文件是一个 ELF 格式的 64 位的可执行文件。x86-64 表示该可执行文件支持的 cpu 架构。,LSB 的全称是 Linux Standard Base,是 Linux 标准规范。其目的是制定一系列标准来增强 Linux 发行版的兼容性。,ELF 的全称是 Executable Linkable Format,是一种二进制文件格式。Linux 下的目标文件、可执行文件和 CoreDump 都按照该格式进行存储。,ELF 文件由四部分组成,分别是 ELF 文件头 (ELF header)、Program header table、Section 和 Section header table。,
,接下来我们分几个小节挨个介绍一下。,ELF 文件头记录了整个文件的属性信息。原始二进制非常不便于观察。不过我们有趁手的工具 - readelf,这个工具可以帮我们查看 ELF 文件中的各种信息。,我们先来看一下编译出来的可执行文件的 ELF 文件头,使用 --file-header (-h) 选项即可查看。,ELF 文件头包含了当前可执行文件的概要信息,我把其中关键的几个拿出来给大家解释一下。,以上几个字段是 ELF 头中对 ELF 的整体描述。另外 ELF 头中还有关于 program headers 和 section headers 的描述信息。,在介绍 Program Header Table 之前我们展开介绍一下 ELF 文件中一对儿相近的概念 - Segment 和 Section。,ELF 文件内部最重要的组成单位是一个一个的 Section。每一个 Section 都是由编译链接器生成的,都有不同的用途。例如编译器会将我们写的代码编译后放到 .text Section 中,将全局变量放到 .data 或者是 .bss Section中。,但是对于操作系统来说,它不关注具体的 Section 是啥,它只关注这块内容应该以何种权限加载到内存中,例如读,写,执行等权限属性。因此相同权限的 Section 可以放在一起组成 Segment,以方便操作系统更快速地加载。,
,Program headers table 就是作为所有 Segments 的头信息,用来描述所有的 Segments 的。。,使用 readelf 工具的 --program-headers(-l)选项可以解析查看到这块区域里存储的内容。,上面的结果显示总共有 11 个 program headers。,对于每一个段,输出了 Offset、VirtAddr 等描述当前段的信息。Offset 表示当前段在二进制文件中的开始位置,FileSiz 表示当前段的大小。Flag 表示当前的段的权限类型, R 表示可都、E 表示可执行、W 表示可写。,在最下面,还把每个段是由哪几个 Section 组成的给展示了出来,比如 03 号段是由“.init .plt .text .fini” 四个 Section 组成的。,
,和 Program Header Table 不一样的是,Section header table 直接描述每一个 Section。这二者描述的其实都是各种 Section ,只不过目的不同,一个针对加载,一个针对链接。,使用 readelf 工具的 --section-headers (-S)选项可以解析查看到这块区域里存储的内容。,结果显示,该文件总共有 30 个 Sections,每一个 Section 在二进制文件中的位置通过 Offset 列表示了出来。Section 的大小通过 Size 列体现。,在这 30 个Section中,每一个都有独特的作用。我们编写的代码在编译成二进制指令后都会放到 .text 这个 Section 中。另外我们看到 .text 段的 Address 列显示的地址是 0000000000401040。回忆前面我们在 ELF 文件头中看到 Entry point address 显示的入口地址为 0x401040。这说明,程序的入口地址就是 .text 段的地址。,另外还有两个值得关注的 Section 是 .data 和 .bss。代码中的全局变量数据在编译后将在在这两个 Section 中占据一些位置。如下简单代码所示。,接下来,我们想再查看一下我们前面提到的程序入口 0x401040,看看它到底是啥。我们这次再借助 nm 命令来进一步查看一下可执行文件中的符号及其地址信息。-n 选项的作用是显示的符号以地址排序,而不是名称排序。,通过以上输出可以看到,程序入口 0x401040 指向的是 _start 函数的地址,在这个函数执行一些初始化的操作之后,我们的入口函数 main 将会被调用到,它位于 0x401126 地址处。,在我们编写的代码编译完生成可执行程序之后,下一步就是使用 shell 把它加载起来并运行之。一般来说 shell 进程是通过fork+execve来加载并运行新进程的。一个简单加载 helloworld 命令的 shell 核心逻辑是如下这个过程。,shell 进程先通过 fork 系统调用创建一个进程出来。然后在子进程中调用 execve 将执行的程序文件加载起来,然后就可以调到程序文件的运行入口处运行这个程序了。,这个 fork 系统调用在内核入口是在 kernel/fork.c 下。,在 do_fork 的实现中,核心是一个 copy_process 函数,它以拷贝父进程(线程)的方式来生成一个新的 task_struct 出来。,在 copy_process 函数中为新进程申请 task_struct,并用当前进程自己的地址空间、命名空间等对新进程进行初始化,并为其申请进程 pid。,执行完后,进入 wake_up_new_task 让新进程等待调度器调度。,不过 fork 系统调用只能是根据当的 shell 进程再复制一个新的进程出来。这个新进程里的代码、数据都还是和原来的 shell 进程的内容一模一样。,要想实现加载并运行另外一个程序,比如我们编译出来的 helloworld 程序,那还需要使用到 execve 系统调用。,其实 Linux 不是写死只能加载 ELF 一种可执行文件格式的。它在启动的时候,会把自己支持的所有可执行文件的解析器都加载上。并使用一个 formats 双向链表来保存所有的解析器。其中 formats 双向链表在内存中的结构如下图所示。,我们就以 ELF 的加载器 elf_format 为例,来看看这个加载器是如何注册的。在 Linux 中每一个加载器都用一个 linux_binfmt 结构来表示。其中规定了加载二进制可执行文件的 load_binary 函数指针,以及加载崩溃文件 的 core_dump 函数等。其完整定义如下,其中 ELF 的加载器 elf_format 中规定了具体的加载函数,例如 load_binary 成员指向的就是具体的 load_elf_binary 函数。这就是 ELF 加载的入口。,加载器 elf_format 会在初始化的时候通过 register_binfmt 进行注册。,而 register_binfmt 就是将加载器挂到全局加载器列表 - formats 全局链表中。,Linux 中除了 elf 文件格式以外还支持其它格式,在源码目录中搜索 register_binfmt,可以搜索到所有 Linux 操作系统支持的格式的加载程序。,将来在 Linux 在加载二进制文件时会遍历 formats 链表,根据要加载的文件格式来查询合适的加载器。,具体加载可执行文件的工作是由 execve 系统调用来完成的。,该系统调用会读取用户输入的可执行文件名,参数列表以及环境变量等开始加载并运行用户指定的可执行文件。该系统调用的位置在 fs/exec.c 文件中。,execve 系统调用到了 do_execve_common 函数。我们来看这个函数的实现。,这个函数中申请并初始化 brm 对象的具体工作可以用下图来表示。,在这个函数中,完成了一下三块工作。,第一、使用 kzalloc 申请 linux_binprm 内核对象。该内核对象用于保存加载二进制文件时使用的参数。在申请完后,对该参数对象进行各种初始化。,第二、在 bprm_mm_init 中会申请一个全新的 mm_struct 对象,准备留着给新进程使用。,第三、给新进程的栈申请一页的虚拟内存空间,并将栈指针记录下来。第四、读取二进制文件头 128 字节。,我们来看下初始化栈的相关代码。,在上面这个函数中申请了一个 vma 对象(表示虚拟地址空间里的一段范围),vm_end 指向了 STACK_TOP_MAX(地址空间的顶部附近的位置),vm_start 和 vm_end 之间留了一个 Page 大小。也就是说默认给栈申请了 4KB 的大小。最后把栈的指针记录到 bprm->p 中。,另外再看下 prepare_binprm,在这个函数中,从文件头部读取了 128 字节。之所以这么干,是为了读取二进制文件头为了方便后面判断其文件类型。,在申请并初始化 brm 对象值完后,最后使用 search_binary_handler 函数遍历系统中已注册的加载器,尝试对当前可执行文件进行解析并加载。,在 3.1 节我们介绍了系统所有的加载器都注册到了 formats 全局链表里了。函数 search_binary_handler 的工作过程就是遍历这个全局链表,根据二进制文件头中携带的文件类型数据查找解析器。找到后调用解析器的函数对二进制文件进行加载。,在上述代码中的 list_for_each_entry 是在遍历 formats 这个全局链表,遍历时判断每一个链表元素是否有 load_binary 函数。有的话就调用它尝试加载。,回忆一下 3.1 注册可执行文件加载程序,对于 ELF 文件加载器 elf_format 来说, load_binary 函数指针指向的是 load_elf_binary。,那么加载工作就会进入到 load_elf_binary 函数中来进行。这个函数很长,可以说所有的程序加载逻辑都在这个函数中体现了。我根据这个函数的主要工作,分成以下 5 个小部分来给大家介绍。,在 load_elf_binary 中首先会读取 ELF 文件头。,文件头中包含一些当前文件格式类型等数据,所以在读取完文件头后会进行一些合法性判断。如果不合法,则退出返回。,在 ELF 文件头中记录着 Program Header 的数量,而且在 ELF 头之后紧接着就是 Program Header Tables。所以内核接下来可以将所有的 Program Header 都读取出来。,在 fork 系统调用创建出来的进程中,包含了不少原进程的信息,如老的地址空间,信号表等等。这些在新的程序运行时并没有什么用,所以需要清空处理一下。,具体工作包括初始化新进程的信号表,应用新的地址空间对象等。,在清空完父进程继承来的资源后(当然也就使用上了新的 mm_struct 对象),这之后,直接将前面准备的进程栈的地址空间指针设置到了 mm 对象上。这样将来栈就可以被使用了。,接下来,加载器会将 ELF 文件中的 LOAD 类型的 Segment 都加载到内存里来。使用 elf_map 在虚拟地址空间中为其分配虚拟内存。最后合适地设置虚拟地址空间 mm_struct 中的 start_code、end_code、start_data、end_data 等各个地址空间相关指针。,我们来看下具体的代码:,其中 load_bias 是 Segment 要加载到内存里的基地址。这个参数有这么几种可能,因为进程的数据段需要写权限,所以需要使用 set_brk 系统调用专门为数据段申请虚拟内存。,在 set_brk 函数中做了两件事情:第一是为数据段申请虚拟内存,第二是将进程堆的开始指针和结束指针初始化一下。,因为程序初始化的时候,堆上还是空的。所以堆指针初始化的时候,堆的开始地址 start_brk 和结束地址 brk 都设置成了同一个值。,在 ELF 文件头中记录了程序的入口地址。如果是非动态链接加载的情况,入口地址就是这个。,但是如果是动态链接,也就是说存在 INTERP 类型的 Segment,由这个动态链接器先来加载运行,然后再调回到程序的代码入口地址。,对于是动态加载器类型的,需要先将动态加载器(本文示例中是 ld-linux-x86-64.so.2 文件)加载到地址空间中来。,加载完成后再计算动态加载器的入口地址。这段代码我展示在下面了,没有耐心的同学可以跳过。反正只要知道这里是计算了一个程序的入口地址就可以了。,看起来简简单单的一行 helloworld 代码,但是要想把它运行过程理解清楚可却需要非常深厚的内功的。,本文首先带领大家认识和理解了二进制可运行 ELF 文件格式。在 ELF 文件中是由四部分组成,分别是 ELF 文件头 (ELF header)、Program header table、Section 和 Section header table。,Linux 在初始化的时候,会将所有支持的加载器都注册到一个全局链表中。对于 ELF 文件来说,它的加载器在内核中的定义为 elf_format,其二进制加载入口是 load_elf_binary 函数。,一般来说 shell 进程是通过 fork + execve 来加载并运行新进程的。执行 fork 系统调用的作用是创建一个新进程出来。不过 fork 创建出来的新进程的代码、数据都还是和原来的 shell 进程的内容一模一样。要想实现加载并运行另外一个程序,那还需要使用到 execve 系统调用。,在 execve 系统调用中,首先会申请一个 linux_binprm 对象。在初始化 linux_binprm 的过程中,会申请一个全新的 mm_struct 对象,准备留着给新进程使用。还会给新进程的栈准备一页(4KB)的虚拟内存。还会读取可执行文件的前 128 字节。,接下来就是调用 ELF 加载器的 load_elf_binary 函数进行实际的加载。大致会执行如下几个步骤:,
,当用户进程启动起来以后,我们可以通过 proc 伪文件来查看进程中的各个 Segment。,虽然本文非常的长,但仍然其实只把大体的加载启动过程串了一下。如果你日后在工作学习中遇到想搞清楚的问题,可以顺着本文的思路去到源码中寻找具体的问题,进而帮助你找到工作中的问题的解。,最后提一下,细心的读者可能发现了,本文的实例中加载新程序运行的过程中其实有一些浪费,fork 系统调用首先将父进程的很多信息拷贝了一遍,而 execve 加载可执行程序的时候又是重新赋值的。所以在实际的 shell 程序中,一般使用的是 vfork。其工作原理基本和 fork 一致,但区别是会少拷贝一些在 execve 系统调用中用不到的信息,进而提高加载性能。
© 版权声明
文章版权归作者所有,未经允许请勿转载。